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EXECUTIVE SUMMARY 

The quasi-static antenna design algorithm is a scientific approach to designing electrically small 
antennas. Electrically small antennas are small compared to wavelength. The radiation resistance is 
computed from the electrostatic dipole potential. The capacitance is computed from the electrostatic 
potential on the enclosed sphere. The Q is calculated from the radiation resistance and capacitance. 
The general thick-disk-cap monopole, enclosed by a sphere, is modeled with electrostatic multipole 
basis functions on the disk. A sequence of solutions converges in shape and Q. 

Computer Simulation Technology (CST) Microwave Studio is used to compute the impedance of 
the thick-disk-cap monopole. The impedance is numerically fit to the dipole and octupole eigenmode 
equivalent circuit. The antenna eigenmodes are analogous to radio frequency (RF) cavity 
eigenmodes. The radiation resistance is computed from the dipole eigenmode. The DC capacitance is 
accurately computed. The current sharing between the dipole and octupole eigenmodes slightly 
decreases the radiation resistance and slightly increases the antenna Q. The quasi-static antenna 
design algorithm is a good approximation of the exact solution.  

The figure of merit is the Q-factor ratio, the ratio of the Q to QChu, L. J. Chu’s [1] theoretical limit 
for an antenna enclosed by a sphere. The thick-disk-cap monopole has the absolute minimum Q- 
factor ratio of 1.825. The spherical-cap monopole has a slightly lower Q-factor ratio of 1.75. At the 
resonance, the thick-disk-cap monopole’s Q is 22.5. This is much smaller than the spherical-cap 
monopole’s Q of 46.1. Above the resonant frequency, the thick-disk-cap monopole is a superior 
design. 
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1. INTRODUCTION 

Electrically small antennas are common to portable electronics devices, personal digital assistants 
(PDAs), cell phones, etc. These antennas are small compared to wavelength, i.e., electrically small 
antennas. Designing electrically small antennas is an art; they normally have a low radiation 
resistance, a large reactance, and a narrow bandwidth. Electrically small antennas are used when 
reducing the antenna size is a critical design goal. Additional matching components are required to 
eliminate the reactance and increase the resistance. The objective is to develop a scientific method 
for designing electrically small antennas. The radiation resistance and capacitance are optimized to 
give the minimum Q antenna.  

L. J. Chu [1] derived a lower limit for the Q  of electrically small antennas. Chu's Q calculation is 
based on the radiated energy and the stored energy outside a sphere enclosing the antenna; the energy 
inside the sphere is assumed to be zero. H. L. Thal [2] refined this limit by assuming the antenna 
current is limited to the surface of the enclosing surface. The folded spherical helix design by S. R. 
Best [3] meets Thal's limit. M. Gustafsson, C. Sohl, and G. Kristensson [4] derived a Q  limit based 

on the optical theorem. A. D. Yaghjian and H. R. Stuart [5] derived a more restrictive limit on Q . 

The energy inside the sphere limits the antenna performance. The thin-disk-cap monopole is a 
leaky capacitor with a large amount of stored energy inside the sphere. The electric field under the 
disk is larger than the field above the disk. The quasi-static antenna design algorithm [6, 7] 
analytically computed a thick-disk-cap monopole. The thick-disk cap reduces the stored energy and 
Q  by filling some of the spherical volume with conductor. The electric field under the top load is 
still larger than the field above the top load. This paper shows how to reduce the electric field under 
the top load and increase the radiation resistance of the antenna [8]. The antenna shape shifts to 
eliminate the gap (and the energy) between the top of the antenna and the enclosing sphere. The 
stored energy inside the enclosing sphere is limited to the region between the antenna and the ground. 

Electrically small antennas have electric fields much larger than the magnetic fields below the 
antenna resonance. The Asymptotic Conical Dipole (ACD) [9, 10, and 11] was the first antenna 
designed with quasi-static methods. In electrostatics, a perfect conductor is the same as an 
equipotential surface. A line of constant charge on the z-axis, with an image, will generate the ACD 
antenna design. Each ACD antenna has a different height. The quasi-static antenna design algorithm 
[7] fixes the antenna height to a constant a  and the length of the line charge a  is varied; the 
antenna fits within an enclosing sphere with a radius .a  The parameter   is a dimensionless. The Q  
is calculated from 

 
,

1

RadCR
Q


  (1)

where RRad  is radiation resistance, C  is capacitance, and   is angular frequency. The quantities 

RadR  and C  are functions of  . The radiation resistance is calculated from the effective height. The 

capacitance is calculated from the charge on the antenna arm and the maximum potential on the 
spherical enclosing surface.  
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The above equation for Q  is valid below resonance and it gives only the first term in Chu's 
equation: 

 
 

,
11

3 kaka
Q   (2)

where  /2k  and a  is the radius of the enclosing sphere. The ACD design is extended by 
adding a disk-shaped charge distribution as a load on the line charge [7]. A conducting disk in free 
space is used as the charge distribution. This disk charge distribution is symmetric. The electric fields 
between the disks and image will be larger than the electric fields above the disk. There is no 
requirement for the disk charge distribution to be symmetric. Adding a dipole moment moves the 
charge from the bottom of the disk to the top of the disk. This reduces the electric field between the 
disks. A series of multipole charge distributions can be added to the disk to model the general charge 
distribution on the disk. 

Sections 2 and 3 are not needed to understand the results given in Sections 4 and 5. Section 2 
shows how the potential and top load capacitance is computed from electrostatic solutions in oblate 
spheroidal coordinates. Each solution represents a unique multipole moment with an unique 
potential. Only the rotationally symmetric top-load multipole modes will be used in this model. The 
nth  multipole moment falls off as 1

1
nr

 in the far field. The potential for the dipole multipole term and 

higher odd multipole moments add in the far field. The monopole and higher even multipole 
moments cancel in the far fields. All of the multipoles make a unique and diminishing contribution to 
the near fields. In section 3, the effective height is calculated. The effective height calculation with 
dipole moment top load is non-trivial. The effective height cannot be calculated with the 
conventional formula [8]. The effective height is calculated indirectly from the potential on the 
enclosing sphere. The perfect conductor boundary condition, ,0|| E  requires the charge distribution to 

be enclosed by the antenna surface. Only a subset of the charge distributions satisfies this boundary 
condition. The multipole moments have negative potentials, which can cause the equipotential 
surface to terminate on the disk or feed wire. This requires an addition step in the solution process; 
the equipotential surface is sampled to verify that the charge is enclosed by the equipotential surface. 
The final solution must be verified with a detailed calculation of the antenna shape. In Section 4, a 
sequence of multipole basis functions is used to design minimum Q antennas. The antenna designs 
appear to converge in both shape and .Q  The final antenna design fills the top of the sphere; the area 
under the antenna is the only region with electric fields that contributes to stored energy inside the 
enclosing sphere. The electric field on the surface of the antenna is plotted. The electric field under 
the antenna is reduced by adding the dipole moment. The final antenna has an almost horizontal 
lower surface. 

In Section 5, Computer Simulation Technology (CST) Microwave Studio is used to calculate the 
impedance and Q for a 1-m high antenna with a 1-cm-diameter feed line. The impedance is 
calculated with a sequence of energy-based adaptive iterations. L. J. Chu [1], H. D. Foltz, J. S. 
McLean, and L. Bodner [12], and H. Stuart [13] used a series, L , C , with a resistor, 0R , parallel to 

the inductor to model both the reactance and 2  dependence radiation resistance. The model 
represents the dipole eigenmode. The least squares fit to the CST impedance is a good fit to the 
reactance. For the resistance, the two curves cross at only on point; at other points the percentage 
error is large. The radiation resistance has an 2  and 4  frequency-dependent terms; the 
coefficients are calculated with a least square fit. The 2  contribution gives the same effective 
height as the quasi-static antenna design algorithm. The 4  frequency-dependent term is the source 
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of the error in the circuit model. 

The next eigenmode, the octopole, is a circuit connected in parallel with the dipole eigenmode 
model [13]. The octopole (and higher) equivalent circuits reduce to a capacitor at low frequencies. 
The radiation resistance for the octopole eigenmode is not included in the simple equivalent circuit. 
This capacitance combined with dipole eigenmode circuit gives an antiresonance. The dipole and 
octopole eigenmode currents interfere with each other to create a high impedance at antiresonance. A 
least square iteration method was used to calculate the circuit elements. The improved fit to the 
radiation resistance data is attributed to a 4  frequency-dependent term introduced by the parallel 
capacitance. An analysis of the circuit impedance shows that current sharing between the eigenmodes 
introduces a small error in the quasi-static antenna design algorithm. The Qand resistance are 
modified by current sharing factor. The DC capacitance is accurate. The extra capacitance introduced 
by the feed line is estimated. 

In Section 6, CST is also used to calculate the impedance of the spherical-cap monopole. The same 
feed wire was used for the 1-m spherical-cap monopole. The data is fit to the same dipole eigenmode 
with a capacitor approximation of higher eigenmodes. The capacitance of the top-load is larger than 
the above design. The effective height is smaller. The Q-factor ratio is about the same as the result 
obtained by A. R. Lopez [14]. Electrostatic data is not available to compare to the circuit results. 

Section 7 is the conclusion. The quasi-static antenna design algorithm gives a solution very close 
to the spherical-cap monopole (the top-loaded monopole design with the lowest Q ). The algorithm 
does not model all possible antenna shapes. The algorithm only considers antenna shapes that enclose 
the source charge on the disk. A thick-spherical-cap monopole could have a lower .Q  The quasi-
static antenna design algorithm produces a very good antenna design with modest effort. Other 
designs can be computed with a significantly higher radiation resistance and a slightly larger Q. The 
algorithm can be adapted to other enclosing surfaces. 
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2. CAPACITANCE FOR THE OBLATE SPHEROIDAL ANTENNA 

The detailed discussion of the algorithm is given in Reference 7. This discussion is the general 
case. The capacitance of the general thick-disk cap is calculated from the potential on enclosing 
surface  CVq  . The potential is calculated from an analytic solution to the electrostatic equations. 
The top of the feed line has a height a  and  q1  charge; the potential [15, 16] is 

     
   ,

11

11
ln

4

1
),(

0












im

imACD

a

q
z





 (3)

where 
tf RR

a
m    is for the monopole, 

bf RR
a

i    is for the image monopole,   22   azRt
 is 

the distance from  , z  to the top of the monopole, 22  zRf
 is the distance from z,  to the 

feed point, and   22   azRb
 is the distance from z,  to the bottom of the image monopole. The 

parameter   is the fraction of the total charge q  on the antenna top load. The superscript indicates 
an ACD stem. The parameter   is dimensionless, .10    The stem radius is not constant; it 
tapers to a zero as the feed point is approached  

The disk also has the height a , a disk radius of ,a  and a net charge q  where the parameter   

is dimensionless and has the range of values 210   . G. Arfken [17, pp. 599-601 and 596] 
gives the general solution to potential on the disk,   .0,,2  vu  The potential on the disk is a 

linear combination of multipole moments,   imm
n

m
n evPuK cos)( , where v  and u  are defined by the 

oblate spheroidal coordinate system: 

 ),cos()sinh( vuaz   (4)

 ),cos()sin()cosh(  vuax   (5)

 ),sin()sin()cosh(  vuay   (6)

where a  is the disk radius. The antenna’s design with coordinate system is called an oblate 
spheroidal antenna (OSA). The antenna problem will be simplified by assuming rotational symmetry 
where :)cos()cosh( vua   

     .cos)(,,
00




 imm

n
m
nn

nm
nm

mn

evPuK
b

vu 








  (7)
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The rotational symmetry in   requires 0mnb  for 0m  and the associated Legendre Polynomials 

reduce to Legendre Polynomials,    vPvP nn coscos0  . The n/1  is added for numerical 

convenience. The )(uKn  functions are as follows: 

   ),harccot(sin0 uuK   (8)

 )),h(arccot(sin)sinh(1)(1 uuuK   (9)

     ,2/)sinh(3))h(arccot(sin)1).(sinh3( 2
2 uuuuK   (10)

and 

  .
6

1

2

1
)(sinh

2

3

3

5
)sinh(arccot)sinh(

2

3
)(sinh

2

5
)( 23

3 





 






  uuuuuK  (11)

The general case is 

     ),(1  iQiK n
n

n
  (12)

where 

            
    ...

13

5212
arccot)( 31 







   iP
n

n
iP

n

n
iPiiQ nnnn  (13)

The function Kn  at large distance is calculated by expanding  )sinh(/1tan))(cot( uausnha  in a 

power series of 
)sinh(

1

u
. After simplifying, the leading term is 

 

 

(14)

 
,2>>for    

)(sinh

1

3

2
21 u

u
K   (15)

 

 

(16)

and 

 

 
(17)
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since zua )sinh( , the above equations reduce to ,z
a    ,2

3
2

z
a    ,3

15
2

z
a  and   .4

35
2

z
a  This is the 

expected multipole expansion of the field on the z-axis. Figure 1 plots 
nK  as a function of );sinh(u  the 

plot shows the 1
1
nz  dependence. The factor n

1
 is included in Equation (7) to eliminate the αn 

dependence in the far field. The value of a
qb

0400 
  is calculated from the solution of the charged 

conducting disk in free space )harccot(sin)(
04 uuV a
q


 , where q  is the net charge on the disk. The 

only restriction placed on the values of 
nmb  is the charge distribution must be enclosed within an 

equipotential surface. 

 
Figure 1. First four top-load radial multipole basis functions. 

 

The combined potential is 

      ,,,),(, bb
BotDisk

tt
TopDiskACD vuvuzz    (18)

where the variables ut , v t , and ub , v b  are defined from 

 ),cos()sinh( tt vuaaz    (19)

 ),sin()cosh( tt vua   (20)

 ),cos()sinh( bb vuaaz    (21)

 ).sin()cosh( bb vua   (22)



8 

The capacitance is calculated from the maximum value of  ,z  on the sphere cosaz   and 

 sina : 

    2/0  wheresin,cosmax   aaMax  (23)

and 

 
.

Max

q
C


  (24)

In the above coordinate systems, 0tv  and 0bv  are defined in the z  direction. The charge 

distribution that generates the term  bb
BotDisk vu ,  is the mirror image of the charge distribution for 

 tt
TopDisk vu , : 

    tntnn
n

n
tt

TopDisk vPuK
b

vu cos)(,
0 





  (25)

and 

      bnbnn
nn

n
bb

BotDisk vPuK
b

vu cos)(1,
0 

 




. (26)

The sign on  bnbn
b vPuKn

n cos)(


 follows from  bn vP cos , being even or odd relative to 2/v . 

The dipole term is the simplest example to understand:  tt vPuK cos)( 11  has positive charge on the 

top of the disk and  bb vPuK cos)( 11  has positive charge on the top of the image disk (top is +z 

direction for both disks). Both terms have a negative charge on the bottom of the disk and image 
disk. The combined terms 

     bbtt vPuKvPuK cos)(cos)( 1111   (27)

are odd about .0z  For the case, 01 b , the dipole moment of the antenna is increased and the 
electric field under the disk is decreased (with the other parameters unchanged). In the general case, 
when n  is odd, the terms 

     nvPuKvPuK bnbntntn  oddfor  cos)(cos)(   (28)

increases the thn  multipole moment. When n  is even, the terms 

     nvPuKvPuK bnbntntn even for  cos)(cos)(   (29)

subtract in the far field the first contributing far-field moment is the  thn 1  multipole moment. Each 
term has a unique contribution to the electric field under the antenna. 

The next step is to compute the radiation resistance. 
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3. GENERAL CALCULATION OF RADIATION RESISTANCE 

The effective height for a rotationally symmetric charge distribution is 

 
.2),(

1 22

00
dzdzzq

q
h

zaaz

z
Net

Eff 










  (30)

From a previous paper [6, 7], this simplifies to 

   .1
2


a

a
hEff   (31)

The application of the above effective height calculation to the dipole term  vPuK cos)( 11  is not 

obvious. The  vPuK cos)( 11  term is discontinuous at .0u  The function is odd about 2/v  or 

    vPKvPK  cos)0(cos)0( 1111  . The dipole term would give zero for a thin disk with no net 
charge.  

To derive the general case, the dipole moment used as the starting point is 

 
.2),(

22

0
dzdzzq

zaaz

azz 










p  (32)

The potential outside (and on) the sphere can be represented as a sum of spherical harmonics: 

 
    ,  cos,

1

0
1

arforP
r

a
r n

n

n
n












   (33)

where 22 pzr   with all of the charge enclosed in a sphere of radius a . The dipole moment is 

computed from the potentials, 

     .sincos,
2

3
10

2 



dPaaz 




p  (34)

The two equations yield 2
10apz  . The effective height is 

 
.|

2

1
z

Net
Eff q

h p|  (35)
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4. GENERAL OBLATE SPHEROIDAL ANTENNA 

In the calculation for the thin-disk-cap monopole, the feed line is neglected. The capacitance 
calculation assumes all of the charge is on the top load disk. The MATLAB® calculation of the oblate 
spheroidal antenna assumes that %99  of the charge is on the top load and a token %1  of the charge 

is on the feed line: 99.0  and   01.01  . The 1% charge on the feed line makes a ½% change on 
the radiation resistance and about a 1% change in the capacitance. The feed line radius tapers to zero 
at the feed point. As shown in Figure 2, the antenna designs with four and five multipoles are almost 
identical and Q-factor ratios have a 0.03% difference. The antenna design appears to converge in 
shape and Q-factor ratio. 

 
Radial Distance 

Figure 2. A sequence of antenna designs with one to five load multipoles. 

Figure 3 shows a detailed plot of the antenna surface near the sphere. Spherical coordinates 
22  zr  are used for the vertical axis and )/arcsin( r   is used for the horizontal axis. As basis 

functions are added to the antenna design, the shape approaches the surface of the enclosing sphere. 
Figure 3 shows that adding extra multipole moments has a diminishing impact on the Q-factor ratio. 
The multipole moments fall off as 1/1 nr ; they have diminishing impact on the electric field outside 
the sphere and under the antenna.  

The electric field is calculated from the potential and is plotted in Figure 4. The vertical scale is 
electric field magnitude plotted as a function of distance along the surface measured from the top of 
the antenna, 1z  and 0 . The electric field under the antenna is reduced by the dipole moment 
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term. The spike in the electric field is at the transition from almost spherical surface to the antenna 
underside. For the solution with five multipoles, this transition is very sharp. Figure 4 shows that the 
position of the spike moves to the right as multipoles are added. The added multipoles are increasing 
the surface area of the top of the antenna and the total charge on the top of the antenna. 

 
Figure 3. The antenna shape near the enclosing surface. 

 

 
Figure 4. Electric field calculated as a function of distance from the antenna top.  
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5. SECTION CST MODEL OF OBLATE MONOPOLE ANTENNA 

Computer Simulation Technology (CST) Microwave Studio T-solver was used to model the 
antenna; Figure 5 is a plot of the antenna surface with a 45° slice removed to highlight the edge. The 
tapered feed line in the antenna cannot be modeled with Microwave Studio. To simplify the CST 
model, the tapered feed line is replaced with a 1-cm-diameter hollow feed line. The hollow feed line 
was used to reduce the capacitance at the feed point. The small capacitance introduced by the feed 
line is estimated in this section. 

An accurate model for the energy is critical for Q  calculations; CST includes an energy-based 
adaptive meshing that increases the mesh resolution in areas of high-energy density. A sequence of 
adaptive meshing models was run to refine the starting mesh for the next model1. A 1-cm diameter, 
4.3-ohm cylindrical edge port was used at the feed point. The current flows on the cylindrical edge 
port surface. A line source would have a much larger inductance. 

The excitation frequency range was from 15 to 25 MHz; this reduces the energy reflected at the 
input to the antenna2. The hollow feed line was modeled independently to determine the required 
meshing. The CST calculation used the exact antenna geometry. The convergence in the solutions is 
evaluated by looking at the largest difference between previous and current reflection coefficient S

11
. 

In the final run, this difference in S11 is 3.4e-4. This process was time consuming, but it eliminated 
the risk of using too fine a mesh and introducing numerical errors in the solution.  

The antenna capacitance, inductance, Q, and effective height can be extracted from the CST 
impedance data with a MATLAB program. The data with a reflection coefficient, 9.0||  , is 
used in the analysis of the impedance. The MATLAB program calculated the least square best fit to 

Stuart's eigenmode impedance circuit model, Figure 6 and Table 1. The series C  and L  with a 

parallel resistance R0  represents the dipole eigenmode of the antenna. The fit to the reactance was 
very good but the radiation resistance has a large error. An additional octopole eigenmode can be 
modeled at low frequencies as a parallel capacitor OPC  

, where the subscript indicates octopole plus 

higher order eigenmodes (the inductors short the other circuit elements at low frequencies). This 
approximation is very accurate; the octopole eigenmode3 is resonant at 242.22 MHz with only 3.17 Ω 
radiation resistance. The addition of the OSA

OPC   eliminates the error in the numerical fit to the radiation 

resistance. The impact of OSA
OPC   on the reactance is not significant. The superscript indicates the 

antenna type as an OSA (oblate spheroidal antenna). The circuit parameters are computed with an 
iteration process.  

A two-step iteration process is used to minimize the error in the radiation resistance. The dipole 
eigenmode LOSA  and COSA  values are a good approximation to the reactance; they are used as fixed 
inputs to a least square fit for R0

OSA  and OSA
OPC  . The new R0

OSA  and OSA
OPC   values are used as fixed inputs to 

a least square fit for improved LOSA  and COSA  values. This iteration process was repeated until a  
self-consistent numerical solution was obtained. Figure 7 shows the CST impedance and the two 

                                                            
1Shrikrishna Hegde at Sonnent Software provided insight into energy adaptation and meshing. 
2James Whillhite at Sonnent Software suggested matching the source resistance to the antenna resistance and 

using a narrow frequency range to maximize the energy delivered to the antenna. 
3The antenna was excited by a short voltage pulse. After the initial excitation, 0V  at the feed point, the 

antenna is shorted to the ground. 
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eigenmode circuit approximation of the impedance. The difference is so small it is plotted in Figure 
8. The errors introduced by the CST numerical computation and the eigenmode circuit model 
approximation are independent. The small difference between the two models indicates that both are 
accurate.  

 
Figure 5. The three-dimensional OSA surface with a 45° slice removed. 

 

Figure 6. The equivalent circuit for the first and second eigenmode approximation. 

The DC capacitance is  

 87.95  
OSA
OP

OSAOSA
CSTDC CCC . (36)

The impact of the 1-cm-diameter hollow feed line can be estimated. The current on the feed line is 
almost constant; almost all of the charge flows onto the top load. A reasonable approximation for the 
charge distribution on the feed line is a triangular distribution. The net charge on the feed line is one-
half the monopole charge distribution (constant charge distribution for electrically small monopole). 
The capacitance of the 0.587-m high monopole is 6.2 pF. The feed-line capacitance is about 3.1 pF. 
The quasi-static antenna design algorithm assumes 1% of the total charge is on the tapered OSA feed 
line; the capacitance is 0.9 pF  pF 364.9001.0  . This difference is 2.2StemC  pF.  
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The difference between the two calculations is about 3.3 pF or about 3.6%: 

 56.92  StemOSA
QS

OSA
QSDC CCC . (37)

Table 1. Least square best fit to Stuart's eigenmode impedance circuit model. 

Parameters Eigenmode 1 Eigenmode 1 & 2 QSADA 

CDC  95.87 90.364 pF 

COSA 90.15 pF  90.292385 pF N/A 

LOSA 0.67295 uH  0.67164778 uH  N/A 

R0
OSA

  
1941.8 K  1942.7468 K  N/A 

OSAf0   20.39706 MHz  20.458733 MHz N/A 

h Eff  N/A 0.7063 0.7108 

OSA
OPC    N/A 5.5793389 pF N/A 

Q-factor ratio at resonance N/A 1.772 1.82 

Q-factor ratio 40/a   N/A  1.82 

 

The impedance of the circuit is rewritten to give insight into the Figure 6 current flow. The quasi-
static antenna design algorithm calculates the DC capacitance. The fraction of current flowing into 
the dipole eigenmode is   94.0/  

OSA
OP

OSAOSAOSA CCC . In addition to current sharing, there is a 

circulating current flowing between the two eigenmodes. The OSA
OP

OSAOSA CL  2  increased the radiation 

resistance and inductance. The value OSA
OP

OSAOSA CL  2  is 058.0  near the resonance and 1 at the anti-

resonance. The term 044.0/ 0 OSAOSA RL  is also small near resonance. In the iteration process, 

changes in the value of R0
OSA  and OSA

OPC 
 make an insignificant contribution to the reactance: 
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The term OSA
OP

OSAOSA CL  2  makes a larger contribution to the resistance near resonance, 12%. 

The resistance depends on the ratio   OSAOSA RL 0

2
/  and 

OSA
OPC  ; the values of OSAL  and OSAC  can be fixed 

without restricting the accuracy of the least squares fit to the resistance. 

In the limit as 0 , the radiation resistance and Q reduces to 
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where 

  .
1

OSA
Total

OSA
OP

OSA
OSA
Total RCC

Q





 

The above term can be simplified by introducing the OSA
EMDipoleQ  , where the subscript DipoleEM 

indicates the dipole eigenmode 
OSA

EMDipole
OSA

OSA
EMDipole RC

Q


1
  , 

where 

 
OSA

OSA
OSA

EMDipole R

L
R

0

2


 . 

The OSA
EMDipoleQ   of the dipole eigenmode is increased by OSA/1 , the same result cited by H. R. Stuart 

[18]: 

OSAOSA
EMDipole

OSA
Total QQ /  . 

The radiation resistance, Figure 9, has two components  2  and 4  terms, 

    ,// 4
2

2
1 rrOSA bbR    

where r  is the angular resonant frequency, 6465.31 b  and 4575.02 b . The effective height in 

Table 1 is calculated from the 2  term in the radiation resistance. The quasi-static antenna design 
algorithm is close to the value in Table 1; but, it does not include the current sharing factor 2  in the 
radiation resistance. The current sharing factor increases the OSA

EMDipoleQ  
 by 13.1/1  . The octopole 

eigenmode increases the radiation resistance at higher frequencies.  

The Q, shown in Figure 10 is numerically calculated from the fit data using the A. D. Yaghijian 
and S. R. Best [19] result:  

 
.

||

2

22







 











d

dXX

d

dR

R
Q  (39)

Figure 11 shows the  3kaQ  “Q-factor ratio” for the antenna that was calculated for an extended 
frequency range. The minimum Q-factor ratio is 1.77. The Q at resonance is 22.47.  
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Figure 7. CST data and two-eigenmode equivalent circuit model. 
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Figure 8. Difference between the CST data and the two-eigenmode model for |ρ| < 0.9. 
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Figure 9. The 2 and 4  contribution to resistance. 
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Figure 10. Q for the minimum Q OSA design. 
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Figure 11. Q-factor ratio for the minimum Q OSA design. 
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6. CST MODEL OF A SPHERICAL-CAP MONOPOLE 

The same method was used to model a spherical-cap monopole. The edge of the spherical-cap 
monopole requires a higher resolution CST model. If the edge thickness was set too small, CST will 
not accurately model the conductor and the electric field. An accurate model of the electric field is 
critical to the calculation of the Q. The shell thickness is 0.83 cm; the horizontal edge is 1 cm and the 
height of the edge is 0.556 m. A. R. Lopez [14] published a Q-factor ratio of   75.13 kaQ , where

025.0a . 

The same MATLAB program was used to numerically fit the data to a two-eigenmode model, 
Table 2 and Figure 12. The superscript SP is for spherical-cap monopole. Figure 13 shows the 
magnitude of the resistance and reactance error is  001.0 and  .0022.0 , respectively. The 
spherical-cap monopole has a larger surface area and a smaller charge density larger than the above 
antenna. The potential on the spherical-cap monopole will be smaller and the DC capacitance is 8% 
larger than the above antenna. The effective height is 5% smaller than the above antenna. The 
inductance of the spherical-cap monopole is 52% larger than the oblate spheroidal antenna. A thinner 
spherical shell will have less charge on the edge and a higher charge density on the sphere. The 
higher charge density increases the potential on the sphere, which decreases the capacitance. Moving 
the edge charge to a higher position increases the effective height. H. R. Stuart and A. D. Yaghjian 
[20] pointed out that a thicker shell has a higher Q-factor ratio. The feed-line analysis is the same as 
above. A 1-m monopole has 9.54-pF capacitance. The feed line would have a capacitance around 5 
pF. The CST model is reasonably accurate. The higher inductance reduces the resonance to 15.88 
MHz. The Q at resonance is 46.1, much higher than the oblate spheroidal antenna.  

The radiation resistance, shown in Figure 14, has two components, 2  and 4 : 

     ,// 4
2

2
1 rrSP ssR    (40)

where r  is the angular resonant frequency, 9427.11 s  and 2768.02 s . The Q is plotted in 
Figure 15 and the Q-factor ratio is plotted in Figure 16. 

Table 2. Spherical-cap monopole impedance fit to a two-eigenmode model. 

Parameters Eigenmode 1 Eigenmode 1 & 2 

CSP  97.854775 pF 97.925944 pF 

LSP  1.0263675 µH 1.0254508 µH 

SPR0   4719.2571  4718.4470   

SPf0  15.90688 MHz 15.88625 MHz 

hEff  
N/A 0.6619 

SP
OPC   N/A 6.1185130 pF 

FactorQ  N/A 1.70 
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Figure 12. CST impedance and two-eigenmode model. 
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Figure 13: Difference between the CST data and the two-eigenmode model. 

 



26 

 

Figure 14. The 2 and 4  components of resistance. 
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Figure 15. Q for spherical-cap monopole. 
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Figure 16. Q-factor ratio for spherical-cap monopole. 
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7. CONCLUSION 

The quasi-static antenna design algorithm modeled a thick-disk cap as a sum of multipole 
moments. The algorithm appears to converge in Q and shape. In the case of a spherical enclosure, the 
Q is only slightly larger than the minimum Q spherical-cap monopole. Above the resonant frequency 
of the oblate spheroidal antenna, the Q is one-half of the spherical-cap monopole. This is caused by 
the reduced inductance of the feed line. This increases the resonant frequency and greatly reduces the 
Q.  

This algorithm only included solutions with the (charge distribution) disk enclosed inside the 
antenna surface. The allowed solutions are limited to the thick-disk-cap dipole. A thick-spherical-cap 
monopole could be thick at the center and taper to a thin edge. The thick center could reduce the 
stored energy under the spherical cap. The dipole moment and radiation resistance would be reduced. 
The thick-spherical cap could reduce Q-factor ratio.   

The electromagnetic properties of an antenna can be described as a linear combination of 
eigenmodes. The quasi-static antenna design algorithm is a method for calculating the radiation 
resistance of the dipole eigenmode (the ω2 term) and the DC capacitance of the antenna. The three-
element circuit model of the dipole eigenmode impedance does not accurately explain the impedance 
and Q. An accurate model for the impedance requires a contribution from the octopole and higher 
eigenmodes. The octopole and higher eigenmode can be approximated with a parallel capacitor. The 
interaction of the dipole and octopole eigenmode introduces the ω4 term required in the radiation 
resistance.  

The quasi-static antenna design algorithm ignores the octopole and higher order eigenmodes of the 
antenna. The current sharing between the dipole eigenmode and higher eigenmodes is also ignored. 
This introduces a small error in the Q and dipole eigenmode radiation resistance. The circulating 
current in the circuit model increases both the effective radiation resistance and the effective 
inductance. 

The quasi-static antenna design algorithm is an excellent approximation of electrically small 
antennas. In most cases, the error caused by the current sharing factor ratio should be insignificant.  
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